OKLAHOMASTATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 4503
Random Signals and Noise Spring 2004

Midterm Exam \#1

Choose any four out of five.
Please specify below which four you choose to be graded.

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Given that two events \bar{A}_{1} and \bar{A}_{2} are statistically independent, show that A_{1} is also statistically independent of A_{2},
(i.e., given $P\left(\bar{A}_{1} \cap \bar{A}_{2}\right)=P\left(\bar{A}_{1}\right) P\left(\bar{A}_{2}\right)$, prove $P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right)$.)

Problem 2:

Show if a random variable is symmetrical about $x=a$ (i.e., $f_{X}(x+a)=f_{X}(-x+a)$), then $E[x]=a$.

Problem 3:

In a game show, contestants choose one of three doors to determine what prize they win. History shows that the three doors, 1,2 , and 3 , are chosen with probabilities $0.30,0.45$, and 0.25 , respectively. It is also known that given door 1 is chosen, the probabilities of winning prizes of $\$ 0, \$ 100$, and $\$ 1,000$ are $0.10,0.20$, and 0.70 . For door 2 the respective probabilities are 0.50 , 0.35 , and 0.15 , and for door 3 they are $0.80,0.15$, and 0.05 . If X is a random variable describing dollars won, and D indicates the door selected (values of D are $D_{1}=1, D_{2}=2$, and $D_{3}=3$), find a) $F_{X}\left(x \mid D=D_{1}\right)$, b) $f_{X}\left(x \mid D=D_{2}\right)$, and c) $f_{X}(x)$.

Problem 4:

A random variable X is uniformly distributed on $(0,6)$. If X is transformed to a new random variable via

$$
Y=2(X-3)^{2}-4,
$$

find a) the density function $f_{Y}(y)$, b) \bar{Y}, and c) σ_{Y}^{2}.

Problem 5:

In a computer simulation, it is desired to transform numbers, that are values of a random variable uniformly distributed on $(0,1)$, to numbers that are values of an Weibull distribution random variables, as defined by

$$
F_{X}(x)=\left[1-e^{-x^{3} / 2}\right] u(x) .
$$

Find the required transformation.

